
POLITECNICO DI TORINO
Internship report for bachelor’s Degree in Electronics

Engineering

Development of a remote control
application via the internet for a

ROS-based robot

Supervisors

Prof. Stefano Alberto MALAN

Tutor: Ilaria BOSI

Candidate

Antonino CACICIA

OCTOBER 2020





Summary

Working with robotics has been my main professional goal since I was a kid, which
led me to undertake this educational path in Politecnico di Torino. Before March,
the starting date, I had two personal projects developed in adolescence that I am
very proud of; one of them was an Arduino-based wheeled obstacle avoidance, the
other is a semi-humanoid robot, with arms, head and little tires for locomotion,
controlled via Bluetooth. Despite having requested an IoT-oriented internship,
after a brief "mail-interview" about me, I was given the chance to work with robotics.

The intent of this report is to expose some state of the art, methods and skills
acquired during my internship at LINKS Foundation, which led to the implementa-
tion of an application for remote control of a ROS-based robot.

The entire internship path was centered on ROS, the Robot Operative System, an
high-level paradigm for robotics application, but for desired purposes, I learned and
reinforced many fields of information technology such as DDS (Data Distribution
Service), MQTT, ASGI Server (Uvicorn), Qt5 and OpenCV libraries and more. In
the first part of the internship I focused mainly on the study of the latest various
technologies and protocols I used, after which the focus shifted to implementing
and testing the different software modules (mostly written in Python). My previous
good skills with GNU/Linux operative system helped me a lot with developing and
testing.

First of all, I learned how to deal with ROS(2), studying how it works, how
to create and develop packages, also using its default simulator, Gazebo; then I
started working on a ROS lane detecting software, using OpenCV.
The first objective of this internship has been to find a way to develop Python
ROS2dashing applications without the ROS 2 ecosystem itself. It’s possible to
make and run "external" support-ros-programs only if it’s possible to communi-
cate with "topics"; Advanced Image Processing and data visualization are good
examples of this operative way. To make this possible, the ROS2dashing’ s DDS
default middleware (FastRTPS) would be necessarily binded from C++ to Python.

ii



Consequentially the problems with Python bindings, the choice fell on a RTI
Connext solution, who natively implement a method to use its C++ based middle-
ware with pure Python, using its rti_connector module. This is possible thanks
to the interoperability among FastRTPS and RTIConnext, because it adapts to
the OMG standard. For this reason, the final project it’s meanted to provide a
demonstration of the potentialities of this choice.

The report begins with a general overview of the communication protocols, devel-
oping tools and libraries used for this project, followed by an introduction to the
implemented remote control application and finally some snippets of code will be
extrapolated and described in order to better understand the deployment of the
implemented scenario.

iii



Table of Contents

Acronyms vi

1 Adopted Technologies 1
1.1 ROS, the Robot Operating System . . . . . . . . . . . . . . . . . . 1

1.1.1 ROS libraries . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 ROS tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 ROS Packages . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Gazebo, the simulator . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 TurtleBot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 DDS, Middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 MQTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 ASGI, Uvicorn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Qt Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.8 OpenCV Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Development 15
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 DDS Qonnector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Qt Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 MQTT publisher . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 camera_subscriber_writer . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 MQTT Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 daemon.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 rticonnextdds_connector . . . . . . . . . . . . . . . . . . . . 26
2.5.2 Defining DDS system in XML . . . . . . . . . . . . . . . . . 27
2.5.3 Python Connector . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.4 MQTT receiver . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 ASGI Video Stream . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Conclusions 41

iv



Bibliography 43

v



Acronyms

OMG
Object Management Group

OSFR
Open Source Robotics Foundation

ROS
Robot Operating System

SBC
Single Board Computer

DDS
Data Distribution Service

GUI
Graphical User Interface

CLI
Command Line Interface

rmw
ROS middleware, DDS

IR
Infra Red (sensor)

LIDAR
Laser Imaging Detection and Ranging

vi



SVG
Scalable Vector Graphics

QoS
Quality of Service

MQTT
Message Queue Telemetry Transport

TLS
Transport Layer Security

SSL
Secure Sockets Layer

ASGI
Asynchronous Server Gateway Interface

WSGI
Web Server Gateway Interface

POSIX
Unix-like operating systems, standard IEEE 1003

SAR
Search And Rescue

vii



Chapter 1

Adopted Technologies

In this chapter will be exposed the state of the art and the premises useful to well
understand the next sections

1.1 ROS, the Robot Operating System

Robot Operating System (ROS)[1] is a collection of software frameworks for robot
software development. ROS is not a real operating system, (needing GNU/Linux
Ubuntu as officially supported OS) but provides services such as hardware ab-
straction, low-level device control, implementation of commonly used functionality,
message-passing between processes, and package management.

Running sets of ROS-based processes are represented in a graph architecture
where processing takes place in nodes that may receive, post and multiplex sensor
data, control, state, planning, actuator, and other messages. Despite the impor-
tance of reactivity and low latency in robot control, ROS itself is not a real-time
OS (RTOS). It is possible, however, to integrate ROS with real-time code. The
lack of support for real-time systems has been addressed in the creation of ROS
2.0 (the chosen one for our purposes), a major revision of the ROS API which will
take advantage of modern libraries and technologies for core ROS functionality and
add support for real-time code and embedded hardware.

All the ROS softwares, tools and the main client libraries (C++ and Python)
are released under the terms of the BSD[2] or Apache[3] license, very interesting
for both commercial and research use.

1



Adopted Technologies

Software in the ROS Ecosystem can be separated into three groups:

• ROS client library implementations such as rclcpp for C++ and rclpy for
Python, but other languages are supported by the community;

• tools used for building ROS-based software and software for debugging and
simulation ;

• packages containing application-related code which uses one or more ROS
client libraries.

1.1.1 ROS libraries
As mentioned before, both Python and C++ is supported by default on ROS.
OSRF provides the libraries rclcpp for C++ and rclpy for Python who implements
all the necessary abstraction, from Nodes to functions for interface with DDS. All
ROS-compatible software must be organised in packages with a specific organization,
essentially an xml file named package.xml who contain all the package informations
(author’s infos, version, dependencies), a CMakeLists.txt / setup.py for building
and the source code itself. The ROS documentation provides an exhaustive
explanation for the package organization[4].

1.1.2 ROS tools
The tools provided by ROS are shown below (referred to ros-foxy-desktop package)

CLI Tools

Here the CLI tools; for other info add -h to the desidered one

ros2 launch Launching multiple programs
ros2 run Run a single program
ros2 topic Publish/Subscribe on/to topics

2



Adopted Technologies

ros2 node Nodes utility
ros2 service Services utility
ros2 pkg Package utility

GUI Tools

• RVIZ, a 3D visualization environment [5].

• rqt, a multiple tool for reading/sending various data, node visualization and
more [6].

• Gazebo [7], the official ROS robot simulator, which deserves a separate
discussion.

1.1.3 ROS Packages
In addition to made-from-scratch packages, it’s also possible to find more online;
functionality and applications such as hardware drivers, robot models, datatypes,
planning, perception, simultaneous localization and mapping, simulation tools, and
other algorithms could be available on wiki.ros.org or on github.com.
Every ROS package (based on Python or C++) must be first builded with colcon ;
before running it is required to execute the installation script.
In root package folder type:

$ source install/setup.bash

1.2 Gazebo, the simulator

A fundamental component of the ROS complete ecosystem is its great simulator,
Gazebo [8]. With Gazebo, in addition to a working 3D robot model, it’s possible
to test and debug all the in-developing packages. LIDARs, cameras, IR sensors,

3



Adopted Technologies

motors could be emulated on this virtual environment.
Inputs and Outputs, each one with its type, are subscribed/published into topics,
managed by rmw_<dds_vendor> .

Not only a raw simulator, Gazebo provides a good tool for building scenarios
out of an house plan, Building Editor, down to the Edit section of the drop-down
menu of the window.

Figure 1.1: Building Editor on Gazebo

It is also possible to import more complex objects, that could be needed for
any reason; Model Editor is the subprogram needed for this purpose:

• SVG files are supported (Inkscape, CAD 2D) to be extruded.

• Spheres, Cubes and Cylinders could be added in-program by default.

• 3D files with .dae .stl .obj format could be imported (Fusion360, Blender,
FreeCAD)

A 3D object imported as a polygonal mesh needs some adjustments. Various
parameter could be set as density, mass, color, physics parameters and more. With

4



Adopted Technologies

a simple manipulation, also textures could be added.

Various robot models are already available by default (also some NASA Robots).
During the all internship Turtlebot3 is the chosen one.

Figure 1.2: Turtlebot3 simulation with custom 3D building (Tempio della Con-
cordia, Agrigento)

1.3 TurtleBot

TurtleBot [9] is a low-cost, personal robot kit with open source software. Turtle-
Bot was created at Willow Garage (the same company that initially supported
OpenCV) in November 2010. The TurtleBot kit consists of a mobile base, 3D

5



Adopted Technologies

Sensor, computer system and the TurtleBot mounting hardware kit. TurtleBot
is designed to be easy to buy, build, and assemble, using off the shelf consumer
products and parts that easily can be created from standard materials. As an entry
level mobile robotics platform, TurtleBot has many of the same capabilities of the
company’s larger robotics platforms. With TurtleBot, users can drive around and
map their environment, see in 3D, and have enough power to create their own
applications.

The chosen version of this series was TurtleBot3 WafflePi, which uses a Rasp-
berry Pi 3 Model B as SBC.

SBC Sensors Embedded Board Actuators

Raspberry Pi 3
(Model B/B+)

LIDAR LDS-01

Raspberry Pi Camera
(IMX219PQH5)

OpenCR1.0
(STM32 based) Dynamixel XM430

ROBOTIS provides a good model for this robot, well used in Gazebo environment
during all the whole internship.

Figure 1.3: The TurtleBot3 Waffle Pi robot

6



Adopted Technologies

1.4 DDS, Middleware

Data Distribution Service (DDS) for real-time systems is a middleware standard
that aims to enable dependable, high-performance, interoperable, real-time, scalable
data exchanges using a publish–subscribe pattern.

DDS addresses the needs of applications like robotics, aerospace and defense,
air-traffic control, autonomous vehicles, medical devices, simulation and testing,
transportation systems, and other applications that require real-time data exchange.

DDS is a networking middleware that simplifies complex network programming. It
implements a publish–subscribe pattern for sending and receiving data, events, and
commands among the nodes. Nodes that produce information (publishers) create
"topics" (e.g., temperature, location, pressure) and publish "samples". DDS delivers
the samples to subscribers that declare an interest in that topic. Any node can be
a publisher, subscriber, or both simultaneously.
Various std types of data are supported:

• char, wchar

• short, unsigned short

• long, unsigned long

• float

• double, long double

• boolean

• string

• enum

From these std types it is possible to derive also more complex structures, basically
declaring it in .idl files; Down below some examples of composted DDS .idls used
in ROS:

7



Adopted Technologies

• Vector3, out of 3 double

• Twist, out of 2 Vector3

• Image, out of floats and other derived types

• LaserScan

• Imu

...

Figure 1.4: DDS scheme visualization

DDS allows the user to specify quality of service (QoS) parameters to configure dis-
covery and behavior mechanisms up-front. By exchanging messages anonymously,
DDS simplifies distributed applications and encourages modular, well-structured
programs. DDS also automatically handles hot-swapping redundant publishers
if the primary fails. Subscribers always get the sample with the highest priority
whose data is still valid (that is, whose publisher-specified validity period has not
expired). It automatically switches back to the primary when it recovers, too.

As mentioned before, OSRFoundation chosed FastRTPS as default for ROS 2.
It is possible to change the default DDS middleware of ROS as shown in documen-
tation [10].

8



Adopted Technologies

1.5 MQTT

MQTT (Message Queuing Telemetry Transport) is a standard (ISO) for lightweight,
publish/subscribe network protocol that transports messages between devices. This
protocol usually runs over TCP/IP. It is designed for connections with remote
locations where a "small code footprint" is required or the network bandwidth is
limited. For this peculiarity it very used in many IoT applications, from Amazon
Dash, Facebook Messenger to smart factories.

The MQTT protocol defines two types of network entities: a message broker
(server) and a number of clients. An MQTT broker receives all messages from the
clients and then routes the messages to the appropriate destination. An MQTT
client is any device (from a micro controller like ESP32 up to a full-fledged server)
that runs an MQTT library and connects to an MQTT broker over a network. For
broker purposes Mosquitto [11] was good. As Python library is used paho-mqtt
[12].

Information is organized in a hierarchy of topics. When a publisher has a new item
of data to distribute, it sends a control message with the data to the connected
broker. The broker then distributes the information to any clients that have sub-
scribed to that topic. The publisher does not need to have any data on the number
or locations of subscribers, and subscribers, in turn, do not have to be configured
with any data about the publishers.

If a broker receives a message on a topic for which there are no current sub-
scribers, the broker discards the message unless the publisher of the message
designated the message as a retained message. A retained message is a normal
MQTT message with the retained flag set to true. The broker stores the last
retained message and the corresponding QoS for the selected topic. Each client
that subscribes to a topic pattern that matches the topic of the retained message
receives the retained message immediately after they subscribe. The broker stores
only one retained message per topic. This allows new subscribers to a topic to
receive the most current value rather than waiting for the next update from a
publisher.

When a publishing client first connects to the broker, it can set up a default
message to be sent to subscribers.
A minimal MQTT control message can be as little as two bytes of data. A control
message can carry nearly 256 MB of data if needed; as first implementation for
a component of the software project, for educational purposes, I tried to carry a
string encoded Image from simulation, with very poor results... So I choose another

9



Adopted Technologies

Figure 1.5: MQTT protocol architecture scheme

technology for it.

MQTT sends connection credentials in plain text format and does not include any
measures for security or authentication. This can be provided by using TLS/SSL to
encrypt and protect the transferred information [13]. By default the unencrypted
MQTT port is 1883. The encrypted port is 8883.

There are also implementations for non TCP based networks as Bluetooth or
ZigBee (MQTT-SN).

10



Adopted Technologies

1.6 ASGI, Uvicorn
During the developing of the project, as mentioned before, it was necessary to find a
way to broadcast a video stream; For this purpose I used the web framework Flask
(WSGI), but I obtained poor results for my desidered standard, with a medium
latency of 3 5 seconds.
I needed something more performing, so ASGI[14] was the best choice.
ASGI (Asynchronous Server Gateway Interface) is a improvement of WSGI, in-
tended to evolve it providing a standard interface between async-capable Python
web servers, frameworks, and applications. Where WSGI provided a standard
for synchronous Python apps, ASGI provides one for both asynchronous and syn-
chronous apps, sensibly improving performances.
Uvicorn[15] was chosen as server implementation, while Starlette[16] as toolkit.

Figure 1.6: Comparison of various Python Web Frameworks (ASGI in yellow)

1.7 Qt Libraries
Qt [17] is a free and open-source widget toolkit for creating graphical user interfaces
as well as cross-platform applications that run on various software and hardware
platforms such as GNU/Linux, Windows, macOS, Android or embedded systems.

Written in C++, it implements a wide range of different features that could

11



Adopted Technologies

be needed in a variety of cases. There is also an official Qt implementation for
Python, which made his choice particularly interesting for the my final project.
There are other programming language unofficial bindings supported by the com-
munity [18].

Today is very popular among GUI developers, used by both FOSS projects like
VLC, KDE, OBS and proprietary software as EAGLE(EDA), VirtualBox, Google
Earth.

Why Qt

Qt was chosen because it offers the following advantages:

• Maturity
Qt framework has been around for more than 20 years while QML itself has
appeared almost 10 years ago. During that time the framework has gone
through quite a few iterations and was constantly improved. Being used
that much in a production also gave the needed testing from which comes
stability and that you cannot get with a brand new framework which might
get completely rewritten or abandoned next year.

• Documentation
Comparing with others GUI libraries, it has one of the best documentations
available. Every part of the framework is covered, even some video tutorials
and examples are provided by the Qt alliance.

• Performances
Qt is after all written in C++ and it runs natively on supported platforms.
Also web app are well-supported, thanks to Qt WebEngine which integrates
chromium engine.

• Cross-platform development
As developers it’s more desirable to make a software for the majority of

12



Adopted Technologies

platforms in order to increase the user base. Qt officially supports GNU/Linux,
Windows, MacOS, Android, iOS,<tv>OS. No needing to rewrite the code to
adapt the various O.S. could encourage companies to release multiple versions
of the same software virtually with no costs, unbinding the user to a particular
operating system.

• QtCreator
Qt SDK full package comes with QtCreator as it’s own IDE that can be
used for Qt/QML development. It has great integration with the whole Qt
platform, programming auto-completion, syntax highlighting and debugger.

1.8 OpenCV Library

Another library worthy of mention is OpenCV[19], which
includes many features related to image processing and
utilities for image manipulation.

Methods like VideoCapture() or imshow() were very
useful in developing and debugging both for ROS and
for the final project.

Some uses of this powerful library will be shown in
the next chapter, where will be exposed little snippets
of code.

13





Chapter 2

Development

This chapter is dedicated to present the final GUI control program and the back-end
software necessary for its correctly functioning.
Snippets of example code will be exposed for better explaining the system flow.
The primary focus of the work was to write a Python CLI program able to stan-
dalone interact with ROS topics, without having to build ROS packages and
sourcing it.

After a short feasibility study, I developed a remote control software with a
graphical interface and a built-in window showing the robot’s video stream.

2.1 Overview
Since it was not possible to develop directly on the physical robot, everything was
made thanks to the use of its ideal model on the Gazebo simulation environment.
All the system consists of various elements:

Client Side:

• DDS Qomunicator - GUI client program

Robot/Simulation Side:

• camera_subscriber_writer (simulation only) - ROS package that sniff from
the Image topic and write the data on virtual device

• daemon.py - fetch signals from MQTT server and write navigation data on
topic /cmd_vel bypassing ROS ecosystem

15



Development

• ASGI Server - take /dev/video3 and make a video stream

Server Side:

• Mosquitto Server - MQTT Broker (for security and remote telemetry)

Figure 2.1: Block diagram of the system

2.2 DDS Qonnector
DDS Qonnector is the main user side program. It is intended as the only program
needed to control remotely the robot. It connects to a remote MQTT broker,
sending control data. With a simple UI, it has a built-in web browser windows
showing the robot video stream and an arrow style controller on the right. Just up
the arrows there is a switch capable of enable/disable the "Incremental Mode"; by
default this functionality is OFF.

16



Development

Incremental Mode: OFF
The arrows simply determine the motion. This is the safer mode, because it acts
one movement by at a time. If the right arrow is pressed just after the up one, the
robot stops its forward movement and start to rotate clockwise.

Incremental Mode: ON
Here the arrows acts as adder/subtractor for the linear and angular velocity, allowing
to compose the vectors.
When switch is pressed, the robot stops.

Figure 2.2: End-User Program with camera visualization and controls

2.2.1 Qt Interface
In Python GUI developing, Qt5 is a professional and wise choice. The use of
this library will now be presented with an example, a simple windows with 3
pushButtons. Through an XML-like file with a .ui extension, properly processed by
a software, it can be created a .py module that can be imported in a main program,
providing the graphical interface.

All the main window elements (PushButtons, RadioButtons, TextBox etc) are

17



Development

included as classes in PyQt, and are called widget. A widget has various properties
such as an object name, a position, a dimension, eventually also a text on it.
Here the XML for this example code:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <ui version="4.0">
3 <class>Dialog</class>
4 <widget class="QDialog" name="Dialog">
5 <property name="geometry">
6 <rect>
7 <x>0</x>
8 <y>0</y>
9 <width>500</width>

10 <height>300</height>
11 </rect>
12 </property>
13 <property name="windowTitle">
14 <string>Dialog</string>
15 </property>
16 <widget class="QPushButton" name="pushButton">
17 <property name="geometry">
18 <rect>
19 <x>80</x>
20 <y>100</y>
21 <width>80</width>
22 <height>100</height>
23 </rect>
24 </property>
25 <property name="text">
26 <string>1</string>
27 </property>
28 </widget>
29 <widget class="QPushButton" name="pushButton_2">
30 <property name="geometry">
31 <rect>
32 <x>200</x>
33 <y>100</y>
34 <width>80</width>
35 <height>100</height>
36 </rect>

18



Development

37 </property>
38 <property name="text">
39 <string>2</string>
40 </property>
41 </widget>
42 <widget class="QPushButton" name="pushButton_3">
43 <property name="geometry">
44 <rect>
45 <x>320</x>
46 <y>100</y>
47 <width>80</width>
48 <height>100</height>
49 </rect>
50 </property>
51 <property name="text">
52 <string>3</string>
53 </property>
54 </widget>
55 </widget>
56 <resources/>
57 <connections/>
58 </ui>

Once the XML-like file is ready, it must be processed by the pyuic utility, from the
QtDevTools package.

$ pyuic5 -x Dialog.ui -o Dialog.py

After a first setting of the window and definition/arrangement of the graphic
components, it’s necessary to connect GUI actions like a click to a desired function
of the program. It’s important to know that there are different ways to interact
with a graphical widget. On the pushButton you can Click, press, release, etc.
Here we use clicked() way, the simplest. Main example program:

1 #!/usr/bin/python3
2 ## File main.py ##
3 ###################
4 ## Example code for Qt5
5 from PyQt5.QtWidgets import QApplication, QWidget
6 from Dialog import Ui_Dialog #this is the generated file
7

8 def one():

19



Development

9 print("You pressed one")
10 def two():
11 print("You pressed two")
12 def three():
13 print("You pressed three")
14

15 app=QApplication([])
16 window=QWidget()
17 dialog=Ui_Dialog()
18 dialog.setupUi(window)
19 # when a clicked() event is detected
20 # on object pushButtonX, connect a
21 # custom function
22 # ####################################
23 # from dialog object, on the pushButtonX
24 # at the event clicked, connect
25 # <foo>
26 dialog.pushButton.clicked.connect(one)
27 dialog.pushButton_2.clicked.connect(two)
28 dialog.pushButton_3.clicked.connect(three)
29 window.show()
30 app.exec()

Figure 2.3: Qt Example program

2.2.2 MQTT publisher
DDS Qonnector has a MQTT publisher on it, sending navigation controls to a
remote server; more will be better treated in the next chapters. At the pressure

20



Development

of a button, the main program sends the relative signal to the server. Here an
example for the code that manage this purpose:

1 import time
2 import paho.mqtt.client as mqtt
3

4 # Broker Server IP and topic name
5 Broker = "Broker Server IP es 95.12.24.48"
6 topic = "Qonnector/keys"
7

8 # Do this every time the program connects to the server
9 def on_connect(client, userdata, flags, rc) :

10 print("Client who send message with code: " + str(rc))
11

12 # Connect the client to the Broker at the 1883 port
13 client = mqtt.Client()
14 client.on_connect = on_connect
15 client.connect(Broker, 1883, 60)
16 client.loop_start()
17

18 i = 0
19 while True:
20 i = i + 1
21 client.publish(topic, "Test sample no: " + str(i))
22 time.sleep(0.001)

2.3 camera_subscriber_writer
Since a video streaming is needed but there’s no physical camera available on
Gazebo simulation, this package makes possible to emulate it as a device.

On a physical POSIX system the /dev directory contains the special device
files for all the devices. ROS relies on Ubuntu GNU/Linux, so every camera
connected is normally represented in the special file /dev/videoN .

For this reason is better to stream directly from, for example, /dev/video0 rather
than subscribing to the video topic and let send its data by a server.

So, basically, the camera_subscriber_writer ROS package allows you to work
exactly as you would work with a real robot.
In that package it’s used the pyfakewebcam Python library.

21



Development

To install it:
$ pip3 install pyfakewebcam

Here the main code for the package:

1 class DevWriter(Node):
2 def __init__(self):
3 # Creating the "camera_subscriber ROS Node"
4 super().__init__('camera_subscriber')
5 # Connector between ROS and OpenCV images
6 self.bridge=CvBridge()
7 # Creating a subscription to the camera topic...
8 # the create_subscription requires a callback,
9 # called listener_callback.

10 self.img_sub = self.create_subscription(
11 Image,
12 '/camera/image_raw',
13 self.listener_callback,
14 qos_profile_sensor_data)
15 # Making the virtual device with resolution 640x480
16 self.fakecamera=pyfakewebcam.FakeWebcam('/dev/video3',640,480)
17

18 def listener_callback(self, ros_image):
19 try:
20 frame = self.bridge.imgmsg_to_cv2(ros_image, "bgr8")
21 except CvBridgeError as e:
22 print(e)
23

24 # We need an RGB image...
25 # Since ROS works with Blue Green Red image by default,
26 # We need to invert the values in order to arrange correctly
27 b,g,r = cv2.split(frame) # get b,g,r
28 rgb_img = cv2.merge([r,g,b]) # switch it to rgb
29

30 # Sending the processed image to the virtual device
31 self.fakecamera.schedule_frame(rgb_img)
32 time.sleep(1/30.0)
33

34

35 def main(args=None):
36 # Initialization before creating the node
37 rclpy.init(args=args)
38 # Creating ROS node called "camera_subscriber"
39 camera_subscriber = DevWriter()

22



Development

40

41 # Execute work and block until the context
42 # associated with the executor is shutdown.
43 rclpy.spin(camera_subscriber)
44

45 # Destroy the node explicitly
46 # This is optional, otherwise it will be done
47 #automatically by the garbage collector camera_subscriber.destroy_node()
48 rclpy.shutdown()
49

50 if __name__ == '__main__':
51 main()

2.4 MQTT Server

Although not strictly necessary for this basic driving purpose, an external server
was used as MQTT broker. Imagine a scenario in which an expensive robot with
a critical task and environment must be remote controlled. An external server
could act as a remote telemetry; as an example, space agencies as NASA, ESA
and Jaxa uses remote systems to collect data from rovers, satellites and space
vehicles. Telemetry is fundamental because the system could be destroyed after or
during the test. Engineers need critical parameters to analyze and improve system
performance. Without telemetry, this data would often not be available.

Another scenario could be the use of robots in military or SAR, where could
be necessarily to know the correct and legit use of the robot by the operator, in
order to prevent abuses or misuse; an external server, with a log program could
record logs, inaccessible by the user, but by the maintainer.

Also, it is possible to implement a security system, as mentioned in previous
paragraph.

To install it:

$ sudo apt install mosquitto

To make it reachable from the internet the router port 1883 (default) as TCP
must be opened

23



Development

Figure 2.4: Mosquitto running on Raspberry-Pi Server

2.5 daemon.py

As a dáimon in classical mythology, daemon.py it’s put in the middle between the
MQTT Server and the robot. It connects itself to the broker and on new message,
it updates the /cmd_vel topic who cares about linear and angular velocity, using
the Twist data type.

Briefly Twist consists of two R3 vectors with it’s relatives axis x, y, z.

Twist
linear

x
y
z

angular
x
y
z

24



Development

To drive this robot, linear(x) and angular(z) are involved. Positive linear velocity
to move forward, negative velocity to move backward. For rotation around his
normal axis, z, the value convention reflect the right-hand rule for curve orientation:
negative values for clockwise rotation, positive values for counterclockwise.

x

y

z (exiting)

lin
ea

r_
x 

>
 0

angular_z < 0

Figure 2.5: Axis convention for the robot with velocity value sign representation

Due confidentiality issues,the operative code will not be shown, but for educational
purposes an ad-hoc fictitious scenario has been created.

Custom example type:

DimensionalTravel
name
age
start_dimension
arrival_dimension

This custom data type has been included in ROS system as a ROS package, so it’s
possible to develop on it.

25



Development

It’s not shown how to make it possible in this report, but here we show the
package file where the type is defined for better understanding:

$ cat ~/Scrivania/ms_ws/custom_msgs/msg/DimensionalTraveler.msg
string name
uint16 age
string start_dimension
string arrival_dimension
$

Figure 2.6: Using rqt to check the correct working of DimensionTraveler type

2.5.1 rticonnextdds_connector
RTI Connext DDS is a software connectivity framework for real-time distributed
applications. It uses the publish-subscribe communications model to make data
distribution efficient and robust.

Python RTI Connector is an API for publishing and subscribing to the Con-
next DDS Databus, written in C++

In Connector, the DDS system is defined in XML. This includes the DDS en-
tities and their data types and QoS. Applications instantiate a Connector object
that loads an XML configuration and creates the entities that allow publishing and
subscribing to DDS Topics.
As mentioned before, Connector works good with any other DDS applications,
FastRTPS and ROS topics included.

26



Development

Figure 2.7: RTI Connector scheme

The best way to obtain RTI Connector for Python is installing it with pip:

$ pip3 install rticonnextdds_connector

2.5.2 Defining DDS system in XML
Connector loads the definition of a DDS system from an XML configuration file
that includes the definition of domains, DomainParticipants, Topics, DataReaders
and DataWriters, data types and quality of service.

The following table summarizes the XML tags, the DDS concepts they define,
and how they are exposed in the Connector API:

27



Development

XML Tag DDS Concept Connector API

<types>

DDS data types
(the types
associated with
Topics)

Types used by inputs
and outputs .

<domain_library>,

<domain>,
<register_type>
and <topic>

DDS Domain,
Topic

Defines the domain
joined by a Connector
and the Topics used
by its inputs and
outputs.

<domain_participant_
library>
and <domain_participant>

DomainParticipant
Each Connector instance
loads a
<domain_participant>.

<publisher>and
<data_writer> DomainParticipant Each <data_writer>

defines an Output
<subscriber>and
<data_reader>

Subscriber and
DataReader

Each <data_reader>
defines an Input.

<qos_library>and
<qos_profile>

Quality of service
(QoS)

Quality of service used
to configure Connector,
Input and Output.

Here the xml code for DDS system:

1 <?xml version="1.0"?>
2 <dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
3 xsi:noNamespaceSchemaLocation="http://community.rti.com/schema

/6.0.0/rti_dds_profiles.xsd"
4 version="6.0.0">
5 <!-- Qos Library -->
6 <qos_library name="QosLibrary">
7 <qos_profile name="DefaultProfile"
8 base_name="BuiltinQosLib::Generic.

KeepLastReliable"
9 is_default_qos="true">

10 <participant_qos>
11 <participant_name>
12 <name>Dimensional Traveler DDS</name>
13 </participant_name>
14 </participant_qos>

28



Development

15 </qos_profile>
16 </qos_library>
17

18 <!-- types -->
19 <types>
20 <module name="custom_msgs">
21 <module name="msg">
22 <module name="dds_">
23 <struct name= "DimensionalTraveler_">
24 <member name="name_" stringMaxLength="255" type="string"/>
25 <member name="age_" type="uint16"/>
26 <member name="start_dimension_" stringMaxLength="255" type=

"string"/>
27 <member name="arrival_dimension_" stringMaxLength="255"

type="string"/> </struct>
28 </module>
29 </module>
30 </module>
31 </types>
32 <!-- Domain Library -->
33 <domain_library name="MyDomainLibrary">
34 <domain name="MyDomain" domain_id="30">
35 <register_type name="custom_msgs::msg::dds_::

DimensionalTraveler_" type_ref="custom_msgs::msg::dds_::
DimensionalTraveler_" />

36 <topic name="rt/portal_gun" register_type_ref="
custom_msgs::msg::dds_::DimensionalTraveler_"/>

37 </domain>
38 </domain_library>
39

40 <!-- Participant library -->
41 <domain_participant_library name="MyParticipantLibrary">
42 <domain_participant name="MyPubParticipant" domain_ref="

MyDomainLibrary::MyDomain">
43 <publisher name="MyPublisher">
44 <data_writer name="MyDataWriter" topic_ref="rt/

portal_gun"/>
45 </publisher>
46 </domain_participant>
47

29



Development

48 <!-- We use separate participants because we run the writer
and the reader

49 on different applications, and wouldn't want to create
the reader

50 in writer.py, or the writer in reader.py -->
51 <domain_participant name="MySubParticipant" domain_ref="

MyDomainLibrary::MyDomain">
52 <subscriber name="MySubscriber">
53 <data_reader name="MyDataReader" topic_ref="rt/

portal_gun"/>
54 </subscriber>
55 </domain_participant>
56

57 <!-- You can also define the reader and writer inside the
same

58 connector instance if you plan to use both in the same
application.

59 -->
60 <domain_participant name="MyParticipant" domain_ref="

MyDomainLibrary::MyDomain">
61 <publisher name="MyPublisher">
62 <data_writer name="MyDataWriter" topic_ref="rt/

portal_gun"/>
63 </publisher>
64 <subscriber name="MySubscriber">
65 <data_reader name="MyDataReader" topic_ref="rt/

portal_gun"/>
66 </subscriber>
67 </domain_participant>
68 </domain_participant_library>
69 </dds>

Now a step-by-step explanation.

Quality of Service

All DDS entities have an associated QoS[20], that describes the performance con-
straints of a communication service.

"Generic.KeepLastReliable" was the best choice, because is the default QoS seleted
for ROS. It enables keep-last reliability, delivering samples by order of sending.
However, new data can overwrite data that has not yet been acknowledged by the

30



Development

reader, therefore causing possible sample loss.

Types

The <types> tags define the data types associated with the Topics to be published
or subscribed to. In this example whe have only a simple structure composed only
of standard data types, so we don’t need the < includefile = ”./FILE.xml”/ >
instruction.

1 <types>
2 <module name="custom_msgs">
3 <module name="msg">
4 <module name="dds_">
5 <struct name= "DimensionalTraveler_">
6 <member name="name_" stringMaxLength="255" type="string"/>
7 <member name="age_" type="uint16"/>
8 <member name="start_dimension_" stringMaxLength="255" type=

"string"/>
9 <member name="arrival_dimension_" stringMaxLength="255"

type="string"/>
10 </struct>
11 </module>
12 </module>
13 </module>
14 </types>

The <module> tag reflect the folder representation of the referred type, custom or
ROS standard.

Just before the main structure is needed the additional <module> block with
"dds_" as name.
Under the <struct> tag, the core of the complex data type.
With <member name="" ... type ="string"/> specify the parameter and
the std type of the struct member;
Every member name and the main structure itself must finish with "_"

If is not string, integer, float, must be specified is a "non basic variable" us-
ing:
type="nonBasic" nonBasicTypeName="some_path::dds_::SomeNoBasic_"

31



Development

Domain

A DDS domain is a logical network of applications: only applications that belong
to the same DDS domain may communicate with each other. A DDS domain has
a unique numerical value, called id.
For every ROS installation is proper to define a particular id at the start of the
system, setting an environment variable:

$ export ROS_DOMAIN_ID=30

Or simply append it to /.bashrc .

Also, it can be determined a set of registered types and topics, making a pass/stop
filter for both.

1 <domain_library name="MyDomainLibrary">
2 <domain name="MyDomain" domain_id="30">
3 <register_type name="custom_msgs::msg::dds_::

DimensionalTraveler_" type_ref="custom_msgs::msg::dds_::
DimensionalTraveler_" />

4 <topic name="rt/portal_gun" register_type_ref="
custom_msgs::msg::dds_::DimensionalTraveler_"/>

5 </domain>
6 </domain_library>

As in code snippet the domain it’s restricted to one only topic and to one only
data type, the customised one.

Participant

A (Domain)Participant joins a domain and contains Publishers and Subscribers,
which contain DataWriters and DataReaders. Multiples DomainParticipants can
be declared.

1

2 <domain_participant_library name="MyParticipantLibrary">
3 <domain_participant name="MyPubParticipant" domain_ref="

MyDomainLibrary::MyDomain">
4 ...
5 </domain_participant>

32



Development

DomainParticipant must have it’s own name, callable in after definitions. At the
definition of subscriber/publisher is fundamental to declare the topic name.
If desired to work with rmw, it’s required to add the rt/ prefix to the topic name.

1 <domain_participant name="MyParticipant" domain_ref="
MyDomainLibrary::MyDomain">

2 <publisher name="MyPublisher">
3 <data_writer name="MyDataWriter" topic_ref="rt/portal_gun"/

>
4 </publisher>
5 <subscriber name="MySubscriber">
6 <data_reader name="MyDataReader" topic_ref="rt/portal_gun"/

>
7 </subscriber>
8 </domain_participant>

2.5.3 Python Connector
Since everything is declared in the XML file, the code is not so complex. A
connector class is instantiated by receiving the DDS_setting_file.xml and the
desired Domain Participant.

1 connector = rti.Connector("MyParticipantLibrary::MyParticipant", "MyDDS.xml");

When declaring a Connector, the chosen DDS DomainParticipant and all its sub-
entities (Topics, Subscribers, DataReaders, Publishers, DataWriters) are created.
Open and close a connector using respectively connector=rti.Connector(...) and
connector.close()
Alternatively, the open_connector() method automatically open and close the
connector

1 with rti.open_connector("MyParticipantLibrary::MyParticipant", "MyDDS.xml") as
connector.

For creation of a Publisher, an object output must be created from connector,
loading a data writer defined before in XML file.

33



Development

1 output = connector.get\_output("MyPublisher::MyDataWriter")

After the creation, it’s possible to set the output object’s parameters:

1 output.instance.set\_string("name\_", "Rick Sanchez")

Once everything is setted, use the method write() to send it; If a delay is desired,
the library provides the method wait(<TIME_MILLIS>) . Here the example code
for topic writer (Python):

1 ########## writer code #########
2

3 import rticonnextdds_connector as rti
4

5 with rti.open_connector("MyParticipantLibrary::MyParticipant", "MyDDS.xml") as
connector:

6 # Use connector
7 while True:
8 # Setting all the various parameters
9 output = connector.get_output("MyPublisher::MyDataWriter")

10

11 # Setting Parameters:
12 # the object "output" has the previous introduced
13 # attributes...
14 #
15 # set_string()/set_number() for string/numerical values
16

17 output.instance.set_string("name_", "Rick Sanchez")
18 output.instance.set_number("age_", 70)
19 output.instance.set_string("start_dimension_", "C−137")
20 output.instance.set_string("arrival_dimension_", "A−185")
21

22 # Once everything is set, send the message
23 output.write()
24 print("DEBUG: Sended")
25

26 # Introducing a delay in sender
27 output.wait(1000)

34



Development

For completeness of information, here an example code also for subscriber:

1 ########## reader code #########
2

3 import rticonnextdds_connector as rti
4

5 with rti.open_connector("MyParticipantLibrary::MySubParticipant","MyDDS.xml") as
connector:

6 input=connector.get_input("MySubscriber::MyDataReader")
7 print("Starting Subscriber: Waiting for data...")
8 for i in range(1, 500):
9 input.wait() # wait for data on this input

10 input.take()
11 for sample in input.samples.valid_data_iter:
12 data = sample.get_dictionary()
13 name = data['name_']
14 age = data['age_']
15 start_dimension=data['start_dimension_']
16 arrival_dimension=data['arrival_dimension_']
17 print("name: " + name)
18 print("age: " + repr(age))
19 print("start dimension: " + start_dimension)
20 print("arrival dimension: " + arrival_dimension)
21 print("−−−−−−−")

Figure 2.8: Publisher and Subscriber working correctly

35



Development

2.5.4 MQTT receiver
This ROS-independent drive program needs to connect to the already introduced
MQTT server. The chosen Python library for this purpose is paho-mqtt.

$ pip3 install paho-mqtt

Briefly the MQTT client code of daemon.py subscribes to the remote server topic
and, multiplexing the inputs, it writes on the ROS topic /cmd_vel in order to
control the robot in the environment.
Here an code example that show how to library can be implemented as a client.

1 import time
2 import paho.mqtt.client as mqtt
3

4 # broker IP address
5 Broker = "Remote Server IP e.g. 93.123.45.67"
6 # subscribe topic
7 topic = "Qonnector/keys"
8

9 # on connect function
10 def on_connect(client, userdata, flags, rc) :
11 print("MQTT Qonnect Server up with code " + str(rc))
12 client.subscribe(topic)
13

14 # on message function
15 def on_message(client, userdata, msg) :
16 print("MQTT topic contains " + str(msg.payload))
17 if msg.payload==b'u':
18 ... do something
19 if msg.payload==b'd':
20 ... do something
21

22 # instantiate paho MQTT client
23 client = mqtt.Client()
24

25 # add on_connect and on_message functions to client events
26 client.on_connect = on_connect
27 client.on_message = on_message
28

29 # connect paho client to mosquitto broker (IP, port, timeout)
30 client.connect(Broker, 1883, 60)
31

32 # client loops forever
33 client.loop_forever()

36



Development

2.6 ASGI Video Stream
A software for remote robot control is useless without the visualization on what
is happening to the other part of the world. For this reason a video stream is
implemented on the robot side. To extremely minimize latency, an Asynchronous
Server Gateway Interface has been used.

Two dependencies must be installed:

$ pip3 install uvicorn

$ pip3 install starlette

To implement the streaming, first a templates/index.html file is needed:

1 <html>
2 <head>
3 <title>Turtlebot3 Live Streaming</title>
4 </head>
5 <body>
6 <!−− HTML color to match the DDS Qonnector's window background −−>
7 <body style="background−color:#efefef">
8 <h3 class="mt−5">Turtlebot3 Live Streaming</h3>
9 <img src="/stream/">

10 </body>
11 </html>

Here the video stream Python program; to write it I based much of my work relying
toughly on documentation [21] [22]:

1 import cv2
2 import asyncio
3 import uvicorn
4 from starlette.applications import Starlette
5 from starlette.routing import Route, Mount
6 from starlette.templating import Jinja2Templates
7

8 # Linking the folder ./templates/
9 templates = Jinja2Templates(directory="templates")

10

11 class Camera:
12 def __init__(self):
13 # camera on /dev/video3

37



Development

14 self.video_source = 3
15

16 # This function takes bites of video stream,
17 # converting to bytes ready to be transmitted by the server
18 async def frames(self):
19 # Handling video from /dev/video3
20 video = cv2.VideoCapture(self.video_source)
21

22 # Handling video streaming error
23 if not video.isOpened():
24 raise RuntimeError("Could not start video.")
25

26 # return the number of frames in video file
27 frame_total = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
28 frame_count = 0
29

30 while True:
31 if frame_count == frame_total:
32 frame_count = 0
33 video = cv2.VideoCapture(self.video_source)
34

35 ret, frame = video.read()
36 frame_count += 1
37

38

39 frame_bytes = cv2.imencode(".jpg", frame)[1].tobytes()
40 yield frame_bytes
41 await asyncio.sleep(0.01)
42

43

44 async def homepage(request):
45 # Connecting to webpage showed before
46 return templates.TemplateResponse("index.html", {"request": request})
47

48 async def stream(scope, receive, send):
49 # Server side code
50

51 message = await receive()
52 camera = Camera()
53

54 if message["type"] == "http.request":
55 await send(
56 {
57 "type": "http.response.start",
58 "status": 200,

38



Development

59 "headers": [
60 [b"Content−Type", b"multipart/x−mixed−replace; boundary=frame"]
61 ],
62 }
63 )
64 while True:
65 async for frame in camera.frames():
66 data = b"".join(
67 [
68 b"−−frame\r\n",
69 b"Content−Type: image/jpeg\r\n\r\n",
70 frame,
71 b"\r\n",
72 ]
73 )
74 # Sending results to net
75 await send(
76 {"type": "http.response.body", "body": data, "more_body": True}
77 )
78

79 routes = [Route("/", endpoint=homepage), Mount("/stream/", stream)]
80 app = Starlette(debug=True, routes=routes)
81

82 if __name__=="__main__":
83 # Server running the framework (uvicorn)
84 uvicorn.run("app:app", host="<robot_ip>", port=5000, log_level="info")

39





Chapter 3

Conclusions

During this period of internship (taking advantage of the smart and agile working
mode with the colleagues of LINKS Foundation), I surely acquired the basis of
real robotics, that opened up a whole new world for me to explore.
Not only ROS and programming, but also 3D design, web protocols, GNU/Linux
system administration are new or reinforced fields.
Certainly, although it was very gratifying, there was no lack of moments of dis-
couragement, doubts and frustration; A lot of effort went into finding bugs and
fixing them, spending many hours, days and sometimes a few sleepless nights in
this process, searching for documentation and test improvements.

The use of robots is increasing in recent years to carry out risky tasks or in
critical and difficult to access areas. The first robots to be used to explore areas
inaccessible to people and to report useful information on the state of things were
the crawler robots that entered the World Trade Center on 11 September 2001, and
the same was for the Fukushima Daiichi nuclear disaster in 2011. In earthquake of
Amatrice (Italy) in 2016 the use of drones helped a lot evaluating the impact and
to ensure the safety of operators in the field, and during this year it’s helping us
fight the COVID-19 pandemic [23].
With the next generation network, known as 5G, we will have an almost real-time
communication among devices even very distant from each other, which will make
telesurgery just another way to operate on a patient [24].

The desired aim of the work is to estimate the potential of remote-controlled
robotic systems as much as possible in real time, in order to allow their opera-
tion from distant areas, with particular attention to video latency, as the MQTT
protocol satisfies very well the reactivity issue. Choosing to use an intermediate
MQTT server without having significant delays (in any case much less than video
streaming) is linked to hypothetical security issues as explained in the course of the

41



Conclusions

report, primarily linked to the possibility of having a remote "black box". A smooth
and reactive video stream was the hardest task to satisfy. At first, the popular
Flask framework wasn’t enough for it, but the choice of using an asynchronous
server as uvicorn-starlette was a wise choice, which allowed for a very short delay
overall.

Since ROS could probably be the future standard for robotics as GNU/Linux
for servers, the needing to develop compatible software with this platform is grow-
ing more and more, I personally believe that the results obtained from my project are
a useful starting point for more complex programs for remote control of robots. The
autonomy of this program from ROS environment allows to use the same code even
with other robotics/automation systems without having to change or modify the
software, as long as the system relies on a DDS an use the same naming conventions.

The project that I leave is working properly, but the best would be to test the
system on the physical robot, right now in the laboratory. As a demo, the project
can only be extended; I thought some improvements as labels on DDS Qonnector
showing velocity info, sensor values, network statistics, and by also server side it
could be implemented a security and an analytics system.

Despite the COVID-19 pandemic issue, the Links Foundation was made pos-
sible to carry out the internship without particular problems, extending what
was an exceptional practice to normality. Skype calls with my mentor were very
frequent, in which my work was communicated day by day and each time I got
useful advice and knowledge for my works. During those calls I learned how is the
real work of a programmer, business dynamics and how large software projects are
organised and maintained.
Following timetables, chasing deadlines, I felt part of the company and I got a
general idea of how to deal with new hard problems, how to "workaround" and
"think out the box", discovering in me a new dedication to the pleasure of resolution
and the search for new knowledge, hoping finding these challenges in future jobs.

42



Bibliography

[1] Open Robotics Foundation. ROS 2 Documentation. https://index.ros.
org/doc/ros2/ (cit. on p. 1).

[2] Berkeley Regents of the University of California. BSD-2 License. https:
//opensource.org/licenses/BSD-2-Clause (cit. on p. 1).

[3] Apache Software Foundation. Apache License 2.0. https://www.apache.
org/licenses/LICENSE-2.0 (cit. on p. 1).

[4] Open Robotics Foundation. ROS 2 Package Documentation. https://index.
ros.org/doc/ros2/Tutorials/Developing-a-ROS-2-Package/ (cit. on
p. 2).

[5] Open Robotics Foundation. ROS 2 Documentation. https://wiki.ros.org/
rviz (cit. on p. 3).

[6] Open Robotics Foundation. ROS 2 rqt Documentation. http://wiki.ros.
org/rqt (cit. on p. 3).

[7] Open Robotics Foundation. Gazebo Simulator. http://gazebosim.org/
(cit. on p. 3).

[8] Open Robotics Foundation. Gazebo Documentation. http://gazebosim.
org/tutorials (cit. on p. 3).

[9] ROBOTIS. TurtleBot3 Documentation. https://emanual.robotis.com/
docs/en/platform/turtlebot3/overview/ (cit. on p. 5).

[10] Open Robotics Foundation. ROS 2 Middleware Documentation. https://
index.ros.org/doc/ros2/Tutorials/Working- with- multiple- RMW-
implementations/ (cit. on p. 8).

[11] Eclipse Foundation. Mosquitto Website. https://mosquitto.org/ (cit. on
p. 9).

[12] Eclipse Foundation. paho-mqtt PyPi Page. https://pypi.org/project/
paho-mqtt/ (cit. on p. 9).

[13] Eclipse Foundation. Mosquitto Security Documentation. https://mosquitto.
org/man/mosquitto-tls-7.htm (cit. on p. 10).

43

https://index.ros.org/doc/ros2/
https://index.ros.org/doc/ros2/
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-2-Clause
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://index.ros.org/doc/ros2/Tutorials/Developing-a-ROS-2-Package/
https://index.ros.org/doc/ros2/Tutorials/Developing-a-ROS-2-Package/
https://wiki.ros.org/rviz 
https://wiki.ros.org/rviz 
http://wiki.ros.org/rqt 
http://wiki.ros.org/rqt 
http://gazebosim.org/
http://gazebosim.org/tutorials
http://gazebosim.org/tutorials
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://index.ros.org/doc/ros2/Tutorials/Working-with-multiple-RMW-implementations/
https://index.ros.org/doc/ros2/Tutorials/Working-with-multiple-RMW-implementations/
https://index.ros.org/doc/ros2/Tutorials/Working-with-multiple-RMW-implementations/
https://mosquitto.org/
https://pypi.org/project/paho-mqtt/
https://pypi.org/project/paho-mqtt/
https://mosquitto.org/man/mosquitto-tls-7.htm
https://mosquitto.org/man/mosquitto-tls-7.htm


BIBLIOGRAPHY

[14] From ReadTheDocs.io. ASGI Documentation. https://asgi.readthedocs.
io/ (cit. on p. 11).

[15] Encode.io. Uvicorn Website. http://www.uvicorn.org/ (cit. on p. 11).
[16] Encode.io. Starlette Website. https://www.starlette.io/ (cit. on p. 11).
[17] The Qt Company. Qt Documentation. https://www.qt.io/developers

(cit. on p. 11).
[18] The Qt Company. Qt Language Bindings. https://wiki.qt.io/Language_

Bindings (cit. on p. 12).
[19] OpenCV Developers. OpenCV Documentation. https://docs.opencv.org/

master/ (cit. on p. 13).
[20] Real Time Innovation. RTI QoS. https : / / community . rti . com / rti -

doc/510/ndds.5.1.0/doc/html/api_cpp/group__DDSBuiltinQosProfile
sModule.html (cit. on p. 30).

[21] Encode.io. Starlette Requests Documentation. https://www.starlette.io/
requests/ (cit. on p. 37).

[22] Encode.io. Starlette Templates Documentation. https://www.starlette.
io/templates/ (cit. on p. 37).

[23] V.B. Manjunath Gandudi R. Murphy J. Adams. «Robots have demonstrated
their crucial role in pandemics - and how they can help for years to come». In:
World Economic Forum (May 6, 2020). url: https://www.weforum.org/
agenda/2020/05/robots-coronavirus-crisis/ (cit. on p. 41).

[24] Caroline Frost. «5G is being used to perform remote surgery from thousands
of miles away, and it could transform the healthcare industry». In: Business
Insider (Aug. 16, 2019). url: https://www.businessinsider.com/5g-
surgery-could-transform-healthcare-industry-2019-8?IR=T (cit. on
p. 41).

44

https://asgi.readthedocs.io/
https://asgi.readthedocs.io/
http://www.uvicorn.org/
https://www.starlette.io/
https://www.qt.io/developers
https://wiki.qt.io/Language_Bindings
https://wiki.qt.io/Language_Bindings
https://docs.opencv.org/master/
https://docs.opencv.org/master/
https://community.rti.com/rti-doc/510/ndds.5.1.0/doc/html/api_cpp/group__DDSBuiltinQosProfilesModule.html 
https://community.rti.com/rti-doc/510/ndds.5.1.0/doc/html/api_cpp/group__DDSBuiltinQosProfilesModule.html 
https://community.rti.com/rti-doc/510/ndds.5.1.0/doc/html/api_cpp/group__DDSBuiltinQosProfilesModule.html 
https://www.starlette.io/requests/
https://www.starlette.io/requests/
https://www.starlette.io/templates/
https://www.starlette.io/templates/
https://www.weforum.org/agenda/2020/05/robots-coronavirus-crisis/
https://www.weforum.org/agenda/2020/05/robots-coronavirus-crisis/
https://www.businessinsider.com/5g-surgery-could-transform-healthcare-industry-2019-8?IR=T
https://www.businessinsider.com/5g-surgery-could-transform-healthcare-industry-2019-8?IR=T

	Acronyms
	Adopted Technologies
	ROS, the Robot Operating System 
	ROS libraries
	ROS tools
	ROS Packages

	Gazebo, the simulator
	TurtleBot
	DDS, Middleware
	MQTT
	ASGI, Uvicorn
	Qt Libraries
	OpenCV Library

	Development
	Overview
	DDS Qonnector
	Qt Interface
	MQTT publisher

	camera_subscriber_writer
	MQTT Server
	daemon.py
	rticonnextdds_connector
	Defining DDS system in XML
	Python Connector
	MQTT receiver

	ASGI Video Stream

	Conclusions
	Bibliography

